Search results

Search for "conductance switching" in Full Text gives 4 result(s) in Beilstein Journal of Nanotechnology.

Impact of device design on the electronic and optoelectronic properties of integrated Ru-terpyridine complexes

  • Max Mennicken,
  • Sophia Katharina Peter,
  • Corinna Kaulen,
  • Ulrich Simon and
  • Silvia Karthäuser

Beilstein J. Nanotechnol. 2022, 13, 219–229, doi:10.3762/bjnano.13.16

Graphical Abstract
  • mechanism, that is, thermally activated hopping conduction in the case of Ru-terpyridine wire devices or sequential tunneling in nanoparticle-based devices. Furthermore, the conductance switching of nanoparticle-based devices upon 530 nm irradiation was attributed to plasmon-induced metal-to-ligand charge
  • transfer in the Ru-terpyridine complexes used as switching ligands. Finally, our results reveal a superior device performance of nanoparticle-based devices compared to molecular wire devices based on Ru-terpyridine complexes as functional units. Keywords: conductance switching; gold nanoparticles
  • Supporting Information File 1, Figure S11 and Figure S12). Here it is possible, in contrast to Ru(TP)2-complex wire devices, to initiate conductance switching by applying an optical signal. We find a conductance ratio of 1.03 (at 1 V) between the steady-state current under irradiation (on) and in dark (off
PDF
Album
Supp Info
Full Research Paper
Published 15 Feb 2022

Inelastic electron tunneling spectroscopy of difurylethene-based photochromic single-molecule junctions

  • Youngsang Kim,
  • Safa G. Bahoosh,
  • Dmytro Sysoiev,
  • Thomas Huhn,
  • Fabian Pauly and
  • Elke Scheer

Beilstein J. Nanotechnol. 2017, 8, 2606–2614, doi:10.3762/bjnano.8.261

Graphical Abstract
  • . From the most probable conductance values we derive a conductance switching ratio between the open and closed form of 5.9 ± 5.3 times using error propagation to determine the error for the switching ratio. The lower conductance for the open form is expected due to the breaking of π-conjugation in the
PDF
Album
Full Research Paper
Published 06 Dec 2017

Adsorption characteristics of Er3N@C80on W(110) and Au(111) studied via scanning tunneling microscopy and spectroscopy

  • Sebastian Schimmel,
  • Zhixiang Sun,
  • Danny Baumann,
  • Denis Krylov,
  • Nataliya Samoylova,
  • Alexey Popov,
  • Bernd Büchner and
  • Christian Hess

Beilstein J. Nanotechnol. 2017, 8, 1127–1134, doi:10.3762/bjnano.8.114

Graphical Abstract
  • center [4]. Dependent on the cluster composition and due to the intercalation inside a protecting carbon cage, intriguing properties emerge. For instance, single molecular magnetism was observed for DySc2N@C80 [5] and conductance switching by tunneling current induced cluster rotations between chiral
PDF
Album
Full Research Paper
Published 23 May 2017

Copper atomic-scale transistors

  • Fangqing Xie,
  • Maryna N. Kavalenka,
  • Moritz Röger,
  • Daniel Albrecht,
  • Hendrik Hölscher,
  • Jürgen Leuthold and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2017, 8, 530–538, doi:10.3762/bjnano.8.57

Graphical Abstract
  • mV. A confocal optical microscopy image of the copper transistor is shown in Figure 1a. A schematic diagram of an atomic-scale transistor is illustrated in Figure 1b. To achieve conductance switching of copper atomic-scale transistors, the potential applied to the gate was controlled by a program
  • conductance switching between 0 and 1G0 (quantum conductance G0 = 2e2/h; with e being the electron charge, and h being Planck’s constant), and 0 and 5G0 results from the change of potential applied to the gate electrode (Figure 2). To operate the transistor, the chip is covered with a glass slide and sealed
  • −12.9 mV in this case. With such a low applied voltage resistive switching is realized. The electrochemical potentials during operation are 220 mV (on) and −40 mV (off) for the switching between 0 and 1G0, and 72 mV (on) and −48 mV (off) for the switching between 0 and 5G0. The conductance switching
PDF
Album
Full Research Paper
Published 01 Mar 2017
Other Beilstein-Institut Open Science Activities